Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Authors
Abstract:
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, immune cells (both native and adaptive) can reciprocally influence the tumor cells features, promote EMT and negatively regulate the anticancer immune response. In this review, we look over the role of EMT in crosstalk between tumor cells and the immune system, with specific emphasis on breast tumors. Finally, we suggest that understanding the role of immune cells in cancer progression could create new opportunities for diagnostic and therapeutic interventions in cancer combination therapy.
similar resources
Mesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line
Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...
full textCDKL2 promotes epithelial-mesenchymal transition and breast cancer progression
The epithelial-mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by epithelial cancer cells. To identify novel regulators of EMT, we carried out cDNA screens that covered 500 human kinases. Subsequent characterization of candidate kinases led us to uncover cyclin-dependent kinase-like 2 (CDKL...
full textEpithelial-mesenchymal transition in breast cancer progression and metastasis
Breast cancer is the most common cancer in women, and approximately 90% of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells. Epithelial-mesenchymal transition (EMT) is a vital process for large-scale cell movement during morphogenesis at the time of embryonic development. Tumor cells usurp this developmental program to execute the multi-step process of tum...
full textAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
full textEpithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
full textEpithelial-mesenchymal transition and pancreatic cancer progression
Pancreatic ductal adenocarcinoma (PDAC) continues to be one of the most lethal human malignancies, with median survival of less than one year and overall 5-year survival of less than 5%. There is increasing evidence for contribution of epithelialmesenchymal transition (EMT) to pancreatic cancer metastasis and to treatment resistance. In this chapter we will review the role of EMT in pancreatic ...
full textMy Resources
Journal title
volume 25 issue 1
pages 1- 7
publication date 2021-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023